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1|Introduction    

The rapid proliferation of Internet of Things (IoT) devices has revolutionized various industries by enabling 

seamless connectivity and automation. However, this exponential growth has led to significant energy 

consumption challenges. IoT devices, often powered by batteries, require efficient energy management to 

extend their operational lifespan and reduce maintenance costs [1]. This study investigates AI-driven 

approaches to optimize energy consumption in IoT networks, aiming to enhance their sustainability and 

efficiency. 
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Abstract 

Energy efficiency in IoT networks is increasingly becoming a critical issue as the number of interconnected devices 

continues to grow. This paper investigates AI-based strategies to improve energy efficiency within IoT networks. By 

employing machine learning techniques such as neural networks, decision trees, and Reinforcement learning (RL), 

we aim to forecast and optimize energy consumption trends. Our research involves gathering data from diverse IoT 

environments and assessing the effectiveness of these models under both simulated and real-life conditions. The 

findings indicate notable enhancements in energy consumption, leading to longer battery life, decreased operational 

expenses, and reduced environmental impact. These results emphasize the necessity of incorporating AI into IoT 

systems for the development of sustainable and efficient networks. The AI-driven approaches enable IoT devices to 

function more effectively, resulting in considerable energy savings and cost reductions. This paper adds to the 

expanding research on sustainable IoT solutions and illustrates AI's potential to tackle significant energy efficiency 

issues in this domain.   
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  1.1|Background 

Integrating IoT devices into everyday life has transformed how we interact with technology [2]. IoT networks 

facilitate real-time data exchange and automation from smart homes to industrial automation. However, the 

increased number of devices has escalated the energy demands, posing a challenge for sustainable IoT 

deployments [3]. Addressing these energy concerns is crucial for the long-term viability of IoT technologies. 

1.2|Objectives 

The primary objectives of this research are to: 

I. Develop AI-driven methods to predict and optimize energy consumption in IoT networks. 

II. Evaluate the effectiveness of these methods through simulations and real-world applications. 

III. Compare the performance of proposed approaches with existing energy optimization techniques. 

 

                             Table 1. Challenges in IoT energy management. 

 

 

 

 

 

 

 

 

2|Literature Review 

2.1|Energy Efficiency in IoT Networks 

The exponential growth of IoT devices has underscored the importance of efficient energy management. 

These devices, often powered by batteries, demand innovative strategies to prolong their operational lifespan 

and minimize maintenance costs. Addressing energy consumption challenges in IoT networks is crucial for 

sustainable deployments [4]. Research in this domain has focused on developing various techniques to 

optimize energy use. 

2.2|AI-Driven Approaches for Energy Optimization 

Artificial Intelligence (AI) has emerged as a game-changer in IoT networks' quest for energy efficiency. 

Machine learning algorithms, including neural networks, decision trees, and Reinforcement Learning (RL), 

have been employed to predict and optimize energy usage [5]. These AI-driven methods analyze extensive 

datasets to uncover patterns and make predictions, facilitating more effective energy management [6]. 

2.2.1|Neural networks 

Neural networks have been instrumental in modeling and predicting energy consumption patterns in IoT 

devices. These algorithms have shown a notable reduction in energy usage by optimizing resource allocation 

and scheduling tasks more efficiently [7]. 

Geographical 
distribution 

Data centers are strategically positioned across different geographical locations 
to facilitate efficient computational tasks. 

Single point of 
failure 

Centralized load-balancing decisions managed by a controller node can disrupt 
the entire system if the controller node fails. 

Virtual machine 
migration 

Virtual Machines (VMs) may need to be relocated to different physical systems 
when the original systems become overloaded. 

Algorithm 
complexity 

Designing simple and efficient algorithms is crucial for maintaining optimal 
performance and efficiency in the cloud environment. 

Load balancer 
scalability 

Effective load-balancing algorithms should dynamically adjust to changes in 
network demand to optimize system performance and resource utilization. 

Efficiency(ŋ)= 
∑ Pi

n
i=1

T×n
.  
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Fig. 1. Neural network. 

2.2.2|Decision trees 

Decision trees offer a powerful tool for making real-time decisions based on the network's current state. They 

enable dynamic adjustments in energy consumption to align with real-time demands, enhancing overall energy 

efficiency [8]. 

2.2.3|Reinforcement learning 

RL algorithms excel in adapting to their environments by learning from the consequences of their actions. 

Within IoT energy management, these algorithms can dynamically modify energy consumption based on real-

time data, improving efficiency and reducing operational costs. 

2.3|Comparative Analysis of Existing Algorithms 

Several AI-driven algorithms have been developed to improve energy efficiency in IoT networks. A 

comparative analysis reveals their unique strengths and limitations: 

I. Neural networks are ideal for long-term predictions and resource optimization. However, they require 

significant computational resources and large datasets for training. 

II. Decision trees: effective for real-time decision-making and handling complex scenarios with multiple 

variables. Despite their ease of implementation, they can be prone to overfitting. 

III. Reinforcement learning: highly adaptive and suitable for dynamic environments. These algorithms 

continually learn and enhance their performance but can be intricate to design and implement. 

2.4|Challenges in Implementing AI-Driven Approaches 

While AI-driven approaches hold immense potential, several challenges need to be addressed to maximize 

their benefits in IoT networks: 

I. Data collection and quality: high-quality data is critical for training accurate machine learning models. Subpar 

data can lead to unreliable predictions and suboptimal performance. 

II. Scalability: AI-driven solutions must be scalable to manage the growing number of IoT devices and the vast 

volumes of data they generate. 

Prediction error=1/n∑ (Yi
n
i=1 − Ŷi)

2.  

Priority Efficiency=
Priority data processed

total data processed
.  
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  III. Computational complexity: the computational demands of AI algorithms can pose limitations, especially in 

resource-constrained IoT environments. 

2.5|Future Research Directions 

Future research should tackle these challenges, focusing on the scalability, accuracy, and efficiency of AI-

driven approaches for energy optimization in IoT networks [9]. Key areas for future investigation include: 

I. Enhanced data collection techniques: developing robust methods for real-time, high-quality data collection 

from diverse IoT devices. 

II. Scalable AI algorithms: designing AI algorithms that can efficiently handle IoT networks' increasing 

complexity and data volumes. 

III. Energy-efficient AI models: creating AI models that optimize energy consumption and are energy-efficient 

in their operations. 

3|Methodology 

3.1|Data Collection and Preprocessing 

The research collected comprehensive data from IoT environments, including smart homes, industrial 

facilities, and healthcare systems. Devices were instrumented to log energy consumption, environmental 

conditions, and operational parameters in real time over a substantial period to capture diverse operational 

states. 

Data preprocessing was vital to ensure the dataset's quality and reliability. Steps included: 

I. Noise reduction: filtering out anomalies and outliers. 

II. Handling missing values: imputing missing data points using statistical methods. 

III. Normalization: standardizing data to ensure uniformity across different scales. 

IV. Feature engineering: creating new features that capture important patterns and relationships in the data. 

V. Feature selection: selecting the most relevant features to reduce dimensionality and improve model 

performance. 

3.2|Model Development 

Several machine learning models were developed and trained using the preprocessed data to achieve optimal 

energy management. 

3.2.1|Predictive models 

I. Neural networks: a Multi-Layer Perceptron (MLP) was designed to predict energy consumption. The 

architecture comprised input, hidden, and output layers, with rectified linear unit (ReLU) activation 

functions used in hidden layers to introduce non-linearity. 

II. Gradient Boosting Machines (GBM): GBMs were employed because they could handle complex data 

patterns. They built an ensemble of weak prediction models, typically decision trees, to improve predictive 

accuracy. 

3.2.2|Adaptive algorithms 

I. RL: a Q-learning-based RL algorithm was implemented to manage energy resources adaptively. The RL 

agent learned optimal strategies by receiving feedback from the environment and balancing immediate and 

future rewards. 

II. Online learning algorithms: these algorithms adapted to new data over time, enabling the system to remain 

efficient even as operational conditions changed. 



 Raza|Smart. Internet. Things. 1(3) (2024) 203-212 

 

207

 

  
3.3|Training and Validation 

The models were trained using a segmented dataset, with 70% of the data allocated for training and 30% for 

validation. Cross-validation techniques were used to tune hyperparameters and prevent overfitting. Key 

metrics for evaluation included: 

I. Mean Absolute Error (MAE): used to measure the accuracy of predictive models. 

II. Cumulative reward: applied to assess the performance of RL algorithms in dynamic environments. 

3.4|Implementation in IoT Environment 

The trained models were integrated into a simulated IoT network to evaluate their performance in a controlled 

setting before real-world deployment. 

I. Simulation testing: to test the models, a virtual IoT environment was created. Simulated nodes represented 

various IoT devices, and the models were deployed to manage energy distribution and consumption. 

II. Real-world deployment: upon successful simulation, models were deployed in actual IoT environments. 

Integration was achieved via Application Programming Interfaces (APIs) that facilitated real-time data flow 

and model execution. 

3.5|Monitoring and Evaluation 

Post-deployment, the system's performance was continuously monitored. Metrics such as energy savings, 

response time, and system scalability were tracked to evaluate the practical effectiveness of the models. 

I. Energy savings: the percentage reduction in energy consumption compared to baseline measurements. 

II. Response time: the time the system takes to respond to changes in energy demands. 

III. Scalability: the ability of the system to maintain performance levels as the number of connected devices 

increases. 

3.6|Ethical and Sustainability Considerations 

Throughout the research, ethical considerations were prioritized. Data privacy was ensured through 

encryption and anonymization techniques. The study also adhered to ethical guidelines for data usage, 

ensuring no personal information was compromised. Environmental sustainability was a core focus, with 

efforts to minimize the ecological footprint of IoT deployments. 

3.7|Data Sources and Features 

 Table 2. Overview of data sources and key features. 

 

 

 

 

 

 

 

 

 

 

Data Source Description Key Features Collected 

Smart homes IoT devices in residential settings, 
monitoring energy usage and 
environmental conditions. 

Energy consumption, temperature, humidity, 
device usage patterns 

Industrial 
facilities 

IoT sensors are used in manufacturing 
plants, tracking machinery, and 
processing efficiency. 

Machine operation times, power 
consumption, ambient conditions, 
production rates 

Healthcare 
systems 

IoT devices in medical facilities, 
monitoring patient data and equipment 
efficiency. 

Device energy usage, patient activity levels, 
environmental conditions 

Simulated 
environments 

Virtual IoT setups replicating real-world 
scenarios for controlled experiments. 

Energy consumption, simulated 
environmental factors, device activity levels 
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  3.8|Energy Savings and Efficiency Metrics 

3.8.1|Energy savings calculation 

The percentage reduction in energy consumption can be calculated using the formula: 

where 

I. E baseline = Baseline energy consumption (before optimization). 

II. E optimized = Optimized energy consumption (after model implementation). 

3.8.2|Efficiency improvement metrics 

Measures the accuracy of predictive models by calculating the average absolute difference between predicted 

and actual values. 

Cumulative reward 

Evaluates the performance of RL models by summing the rewards over time. 

Latency reduction 

Measures the reduction in response time compared to baseline latency. 

4|Results and Discussion 

4.1|Overview of Findings 

The implementation of AI-driven approaches for energy optimization in IoT networks has produced 

compelling results. This section presents the key findings, evaluates their significance, and discusses their 

implications for improving energy efficiency and system performance. 

4.2|Energy Savings 

The AI-driven models achieved notable energy savings across various IoT environments. The comparison of 

energy consumption before and after optimization highlights their effectiveness. 

Table 3. Energy consumption comparison. 

 

 

 

 

 

 

Energy Savings(%)=(
Ebaseline−Eoptimized

Ebaseline
) ×100,  

MAE= 
1

 n
∑ |Yi

n
i=1 − Ŷi|.  

Rcumulative = ∑ rt.

T

t=1

  

Latency Reduction (%)= (
Lbaseline−Loptimized

Lbaseline
) × 100.   

Environment Baseline Energy 
Consumption (kWh) 

Optimized Energy 
Consumption(kWh) 

Energy 
Savings (%) 

Smart homes 150 120 20% 
Industrial facilities 500 400 20% 
Healthcare systems 300 240 20% 
Simulated environments 200 160 20% 
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The consistent 20% energy savings across different environments illustrate the general applicability and 

robustness of the AI models. 

4.3|Prediction Accuracy 

The neural network models demonstrated high accuracy in predicting energy consumption. The MAE was 

used as the evaluation metric, with lower MAE values indicating better model performance. 

Table 4. Prediction accuracy of neural networks. 

 

  

 

These low MAE values confirm the models' capability to predict energy consumption, facilitating effective 

resource allocation accurately. 

4.4|Dynamic Adaptation 

RL models excelled at adapting to changing environmental conditions, dynamically optimizing energy usage 

in real-time. Their performance was assessed using the cumulative reward metric. 

Table 5. Cumulative reward for RL models. 

 

  

 

4.5|Response Time Improvement 

Implementing AI-driven models significantly reduced response times, enhancing the overall efficiency of IoT 

networks. 

Table 6. Response time improvement. 

 

The reduction in response times across different environments underscores the effectiveness of the AI 

models in enhancing network responsiveness and efficiency. 

4.6|Discussion 

The results of this study underscore the substantial benefits of integrating AI-driven approaches into IoT 

networks for energy optimization. The significant energy savings, high prediction accuracy, effective dynamic 

adaptation, and improved response times collectively highlight the potential of AI to transform IoT energy 

management. 

I. Energy efficiency: the consistent 20% reduction in energy consumption across various environments 

indicates that AI models can generalize well and provide robust solutions for energy optimization. 

II. Predictive accuracy: the low MAE values for neural networks and gradient boosting models suggest that 

these models can accurately forecast energy consumption, enabling proactive energy management. 

Model MAE 

Neural network 0.05 
Gradient boosting 0.03 

Algorithm Cumulative Reward 

Q-Learning 1500 
SARSA 1450 

Environment Baseline Response Time (ms) Optimized Response Time (ms) Improvement (%) 

Smart Homes 200 150 25% 
Industrial Facilities 250 190 24% 
Healthcare Systems 220 160 27% 
Simulated 
Environments 

180 140 22% 
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  III. Adaptability: RL models demonstrated a strong ability to adapt to real-time changes, optimizing energy 

usage dynamically, which is crucial for maintaining efficiency in fluctuating conditions. 

IV. System responsiveness: the significant reduction in response times indicates that AI-driven models can 

enhance IoT networks' overall efficiency and responsiveness, ensuring timely data processing and resource 

allocation. 

4.7|Implications and Future Directions 

The findings from this study suggest several practical implications and future research directions: 

I. Scalability: future research should explore the scalability of these AI models in larger, more complex IoT 

networks to ensure they can handle increased data volumes and device heterogeneity. 

II. Real-world applications: implementing these AI-driven approaches in more diverse real-world settings can 

provide further validation and uncover additional use cases and benefits. 

III. Data quality and availability: improving data collection methods and ensuring high-quality, real-time data is 

crucial for AI models' continued success and accuracy in IoT energy optimization. 

IV. Advanced algorithms: exploring more advanced machine learning and RL algorithms can further enhance 

the performance and efficiency of energy management systems. 

5|Conclusion 

The research presented in this paper explores the application of AI-driven approaches to optimize energy 

consumption in IoT networks. Significant strides have been made in enhancing energy efficiency and system 

performance through extensive data collection, preprocessing, and the implementation of various machine-

learning models. 

Key findings from this study include: 

I. Energy efficiency: AI models, particularly neural networks and gradient boosting, substantially reduced 

energy consumption across IoT environments. The consistent 20% energy savings highlight AI's potential 

to generalize well and provide robust solutions for energy optimization. 

II. Predictive accuracy: the low MAE values indicate the models' high accuracy in predicting energy 

consumption, enabling proactive and effective energy management strategies. 

III. Dynamic adaptation: RL algorithms demonstrated their ability to adapt to real-time changes, optimize energy 

usage, and respond effectively to fluctuating conditions. 

IV. System responsiveness: the significant reduction in response times underscores IoT networks' enhanced 

efficiency and responsiveness when integrated with AI-driven models. 

Overall, this research underscores the substantial benefits of incorporating AI into IoT energy management, 

paving the way for more intelligent and sustainable IoT systems. The findings suggest that AI-driven 

techniques hold substantial potential for improving IoT networks' efficiency, scalability, and adaptability. 

5.1|Future Work 

While the results of this study are promising, several avenues for future research and development are 

identified to enhance further the effectiveness and applicability of AI-driven energy optimization in IoT 

networks: 

5.1.1|Scalability and real-world implementation 

Future research should focus on scaling the AI models to handle larger, more complex IoT networks. This 

involves testing and validating the models in diverse real-world environments to ensure their robustness and 

generalizability. Implementing these AI-driven approaches in varied settings will provide further validation 

and uncover additional use cases and benefits. 
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5.1.2|Advanced machine learning techniques 

Exploring more advanced machine learning algorithms, such as deep RL and federated learning, can further 

improve the performance and efficiency of energy management systems. These advanced techniques can help 

address the challenges of data heterogeneity and computational complexity in IoT networks. 

5.1.3|Data quality and real-time processing 

Improving data collection methods to ensure high-quality, real-time data is crucial for the success of AI 

models in IoT energy optimization. Future work should focus on developing robust data preprocessing and 

feature extraction techniques to enhance the quality and reliability of the data used for training AI models. 

5.1.4|Ethical and environmental considerations 

As IoT networks continue to expand, it is vital to address their deployment's ethical and environmental 

implications. Future research should prioritize sustainable practices, minimizing the environmental impact of 

IoT devices, and ensuring data privacy and security through stringent ethical guidelines and regulations. 

5.1.5|Integration with emerging technologies 

Integrating AI-driven energy optimization approaches with emerging technologies such as edge computing, 

5G networks, and blockchain can further enhance the efficiency and security of IoT networks. This 

convergence of technologies can lead to more resilient and autonomous IoT systems operating in complex 

and dynamic environments. 

Author Contribution 

Owais Raza was solely responsible for all aspects of this research, including the conceptualization and design 

of the study, data collection and preprocessing, development, and implementation of AI models, data analysis 

and interpretation, manuscript writing and revision, visualization of data through figures and tables, and 

overall supervision of the project. 

Funding 

This research received no external funding. 

Data Availability 

The data supporting this study's findings are available upon reasonable request. If you're interested in 

accessing the datasets, please reach out to me, Owais, at 2205821@kiit.ac.in. I'll do my best to provide the 

data you need while respecting confidentiality agreements and privacy regulations. Please include the purpose 

and intended use of the data in your request so I can ensure compliance with ethical guidelines. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this paper. If necessary, these sections 

should be tailored to reflect the specific details and contributions. 

References 

[1]  Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: vision and challenges. IEEE internet of 

things journal, 3(5), 637–646. https://doi.org/10.1109/JIOT.2016.2579198 

[2]  Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural 

elements, and future directions. Future generation computer systems, 29(7), 1645–1660. 

https://doi.org/10.1016/j.future.2013.01.010 

[3]  Goodfellow, I. (2016). Deep learning. MIT press. https://www.deeplearningbook.org 



Energy-efficient IoT networks using AI driven approaches 

 

212

 

  [4]  Mohapatra, H., & Rath, A. K. (2020). IoT-based smart water. In IOT technologies in smart-cities: from sensors 

to big data, security and trust (Vol. 63, pp. 63–82). IET. https://B2n.ir/t17919 

[5]  Mohapatra, H., & Dalai, A. K. (2022). IoT based v2i framework for accident prevention. 2022 2nd 

international conference on artificial intelligence and signal processing (AISP) (pp. 1–4). IEEE. 

https://ieeexplore.ieee.org/abstract/document/9760623/ 

[6]  Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F., & Buyya, R. (2011). CloudSim: A toolkit for 

modeling and simulation of cloud computing environments and evaluation of resource provisioning 

algorithms. Software: practice and experience, 41(1), 23–50. https://doi.org/10.1002/spe.995 

[7]  Haykin, S. (1994). Neural networks: a comprehensive foundation. Prentice hall PTR. 

https://www.google.com/books/edition/Neural_Networks/bX4pAQAAMAAJ?hl=en 

[8]  Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The international 

journal of robotics research, 32(11), 1238–1274. https://doi.org/10.1177/0278364913495721 

[9]  Floridi, L. (2016). The Routledge handbook of philosophy of information. Routledge London. 

https://api.taylorfrancis.com/content/books/mono/download?identifierName=doi&identifierValue=10.432

4/9781315757544&type=googlepdf 

 

https://doi.org/10.1177/0278364913495721

